Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G147-G162, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961761

RESUMO

Cholestenoic acid (CA) has been reported as an important biomarker of many severe diseases, but its physiological and pathological roles remain unclear. This study aimed to investigate the potential role of CA in hepatic lipid homeostasis. Enzyme kinetic studies revealed that CA specifically activates DNA methyltransferases 1 (DNMT1) at low concentration with EC50 = 1.99 × 10-6 M and inhibits the activity at higher concentration with IC50 = 9.13 × 10-6 M, and specifically inhibits DNMT3a, and DNMT3b activities with IC50= 8.41 × 10-6 M and IC50= 4.89 × 10-6 M, respectively. In a human hepatocyte in vitro model of high glucose (HG)-induced lipid accumulation, CA significantly increased demethylation of 5mCpG in the promoter regions of over 7,000 genes, particularly those involved in master signaling pathways such as calcium-AMPK and 0.0027 at 6 h. RNA sequencing analysis showed that the downregulated genes are affected by CA encoding key enzymes, such as PCSK9, MVK, and HMGCR, which are involved in cholesterol metabolism and steroid biosynthesis pathways. In addition, untargeted lipidomic analysis showed that CA significantly reduced neutral lipid levels by 60% in the cells cultured in high-glucose media. Administration of CA in mouse metabolic dysfunction-associated steatotic liver disease (MASLD) models significantly decreases lipid accumulation, suppresses the gene expression involved in lipid biosynthesis in liver tissues, and alleviates liver function. This study shows that CA as an endogenous epigenetic regulator decreases lipid accumulation via epigenetic regulation. The results indicate that CA can be considered a potential therapeutic target for the treatment of metabolic disorders.NEW & NOTEWORTHY To our knowledge, this study is the first to identify the mitochondrial monohydroxy bile acid cholestenoic acid (CA) as an endogenous epigenetic regulator that regulates lipid metabolism through epigenome modification in human hepatocytes. The methods used in this study are all big data analysis, and the results of each part show the global regulation of CA on human hepatocytes rather than narrow point effects.


Assuntos
Colestenos , Epigênese Genética , Pró-Proteína Convertase 9 , Humanos , Animais , Camundongos , Pró-Proteína Convertase 9/metabolismo , Cinética , Hepatócitos/metabolismo , Fígado/metabolismo , Lipídeos , Glucose/metabolismo , Metabolismo dos Lipídeos/genética
2.
J Lipid Res ; 62: 100063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33705741

RESUMO

The oxysterol sulfate, 25-hydroxycholesterol 3-sulfate (25HC3S), has been shown to play an important role in lipid metabolism, inflammatory response, and cell survival. However, the mechanism(s) of its function in global regulation is unknown. The current study investigates the molecular mechanism by which 25HC3S functions as an endogenous epigenetic regulator. To study the effects of oxysterols/sterol sulfates on epigenetic modulators, 12 recombinant epigenetic enzymes were used to determine whether 25HC3S acts as their endogenous ligand. The enzyme kinetic study demonstrated that 25HC3S specifically inhibited DNA methyltransferases (DNMTs), DNMT1, DNMT3a, and DNMT3b with IC50 of 4.04, 3.03, and 9.05 × 10-6 M, respectively. In human hepatocytes, high glucose induces lipid accumulation by increasing promoter CpG methylation of key genes involved in development of nonalcoholic fatty liver diseases. Using this model, whole genome bisulfate sequencing analysis demonstrated that 25HC3S converts the 5mCpG to CpG in the promoter regions of 1,074 genes. In addition, we observed increased expression of the demethylated genes, which are involved in the master signaling pathways, including MAPK-ERK, calcium-AMP-activated protein kinase, and type II diabetes mellitus pathways. mRNA array analysis showed that the upregulated genes encoded for key elements of cell survival; conversely, downregulated genes encoded for key enzymes that decrease lipid biosynthesis. Taken together, our results indicate that the expression of these key elements and enzymes are regulated by the demethylated signaling pathways. We summarized that 25HC3S DNA demethylation of 5mCpG in promoter regions is a potent regulatory mechanism.


Assuntos
Ésteres do Colesterol , Hidroxicolesteróis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...